Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 212(8): 1334-1344, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38391367

RESUMO

Various subspecies of the unicellular parasite Trypanosoma brucei cause sleeping sickness, a neglected tropical disease affecting millions of individuals and domestic animals. Immune evasion mechanisms play a pivotal role in parasite survival within the host and enable the parasite to establish a chronic infection. In particular, the rapid switching of variant surface glycoproteins covering a large proportion of the parasite's surface enables the parasite to avoid clearance by the adaptive immune system of the host. In this article, we present the crystal structure and discover an immune-evasive function of the extracellular region of the T. brucei invariant surface gp75 (ISG75). Structural analysis determined that the ISG75 ectodomain is organized as a globular head domain and a long slender coiled-coil domain. Subsequent ligand screening and binding analysis determined that the head domain of ISG75 confers interaction with the Fc region of all subclasses of human IgG. Importantly, the ISG75-IgG interaction strongly inhibits both activation of the classical complement pathway and Ab-dependent cellular phagocytosis by competing with C1q and host cell FcγR CD32. Our data reveal a novel immune evasion mechanism of T. brucei, with ISG75 able to inactivate the activities of Abs recognizing the parasite surface proteins.


Assuntos
Trypanosoma brucei brucei , Animais , Humanos , Receptores Fc/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte/metabolismo , Imunoglobulina G/metabolismo , Fagocitose , Ativação do Complemento
2.
Adv Mater ; 36(6): e2309385, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009384

RESUMO

In this work, synthetic cells equipped with an artificial signaling pathway that connects an extracellular trigger event to the activation of intracellular transcription are engineered. Learning from nature, this is done via an engineering of responsive enzymes, such that activation of enzymatic activity can be triggered by an external biochemical stimulus. Reversibly deactivated creatine kinase to achieve triggered production of adenosine triphosphate, and a reversibly deactivated nucleic acid polymerase for on-demand synthesis of RNA are engineered. An extracellular, enzyme-activated production of a diffusible zymogen activator is also designed. The key achievement of this work is that the importance of cellularity is illustrated whereby the separation of biochemical partners is essential to resolve their incompatibility, to enable transcription within the confines of a synthetic cell. The herein designed biochemical pathway and the engineered synthetic cells are arguably primitive compared to their natural counterpart. Nevertheless, the results present a significant step toward the design of synthetic cells with responsive behavior, en route from abiotic to life-like cell mimics.


Assuntos
Células Artificiais , Precursores Enzimáticos , Precursores Enzimáticos/metabolismo
3.
FEBS Open Bio ; 14(2): 322-330, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38124617

RESUMO

Tubular activation and deposition of filtered complement proteins have been implicated in the progression of proteinuric kidney disease. The potent C3b-specific nanobody inhibitor of the alternative pathway, EWE-hC3Nb1, is likely freely filtered in the glomerulus to allow complement inhibition in the tubular lumen and may provide a novel treatment option to prevent tubulointerstitial injury. However, more information on the pharmacokinetic properties and renal tubular handling of EWE-hC3Nb1 nanobody is required for its pharmacological application in relation to kidney disease. Here, we examined the pharmacokinetic properties of free EWE-hC3Nb1 in mouse plasma and urine, following subcutaneous injection in wild-type control and podocin knock out (KO) mice with severe proteinuria. Tubular handling of filtered EWE-hC3Nb1 was assessed by immunohistochemistry (IHC) on kidney tissue from control, proteinuric mice, and KO mice deficient in the proximal tubule endocytic receptor megalin. Rapid plasma absorption and elimination of EWE-hC3Nb1 was observed in both control and proteinuric mice; however, urinary excretion of EWE-hC3Nb1 was markedly increased in proteinuric mice. Urinary EWE-hC3Nb1 excretion was amplified in megalin KO mice, and substantial accumulation of EWE-hC3Nb1 was observed in megalin-expressing renal proximal tubules by IHC. Moreover, free EWE-hC3Nb1 was found to be rapidly cleared from plasma. In conclusion, filtered EWE-hC3Nb1 is reabsorbed by a megalin-dependent process in the proximal tubules. Increased load of filtered proteins in the tubular fluid may inhibit the megalin-dependent uptake of EWE-hC3Nb1 in proteinuric mice. Treatment with EWE-hC3Nb1 may allow investigation of the effects of complement inhibition in the tubular fluid.


Assuntos
Nefropatias , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Animais , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Nefropatias/tratamento farmacológico , Proteinúria/metabolismo , Rim/metabolismo , Camundongos Knockout
4.
Mol Immunol ; 165: 29-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142486

RESUMO

The bispecific antibody gefurulimab (also known as ALXN1720) was developed to provide patients with a subcutaneous treatment option for chronic disorders involving activation of the terminal complement pathway. Gefurulimab blocks the enzymatic cleavage of complement component 5 (C5) into the biologically active C5a and C5b fragments, which triggers activation of the terminal complement cascade. Heavy-chain variable region antigen-binding fragment (VHH) antibodies targeting C5 and human serum albumin (HSA) were isolated from llama immune-based libraries and humanized. Gefurulimab comprises an N-terminal albumin-binding VHH connected to a C-terminal C5-binding VHH via a flexible linker. The purified bispecific VHH antibody has the expected exact size by mass spectrometry and can be formulated at greater than 100 mg/mL. Gefurulimab binds tightly to human C5 and HSA with dissociation rate constants at pH 7.4 of 54 pM and 0.9 nM, respectively, and cross-reacts with C5 and serum albumin from cynomolgus monkeys. Gefurulimab can associate with C5 and albumin simultaneously, and potently inhibits the terminal complement activity from human serum initiated by any of the three complement pathways in Wieslab assays. Electron microscopy and X-ray crystallography revealed that the isolated C5-binding VHH recognizes the macroglobulin (MG) 4 and MG5 domains of the antigen and thereby is suggested to sterically prevent C5 binding to its activating convertase. Gefurulimab also inhibits complement activity supported by the rare C5 allelic variant featuring an R885H substitution in the MG7 domain. Taken together, these data suggest that gefurulimab may be a promising candidate for the potential treatment of complement-mediated disorders.


Assuntos
Complemento C5 , Anticorpos de Domínio Único , Humanos , Proteínas do Sistema Complemento/metabolismo , Ativação do Complemento , Albuminas
5.
J Hazard Mater ; 458: 131986, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37413797

RESUMO

Polyethylene (PE) and industrial dyes are recalcitrant pollutants calling for the development of sustainable solutions for their degradation. Laccases have been explored for removal of contaminants and pollutants, including dye decolorization and plastic degradation. Here, a novel thermophilic laccase from PE-degrading Lysinibaccillus fusiformis (LfLAC3) was identified through a computer-aided and activity-based screening. Biochemical studies of LfLAC3 indicated its high robustness and catalytic promiscuity. Dye decolorization experiments showed that LfLAC3 was able to degrade all the tested dyes with decolorization percentage from 39% to 70% without the use of a mediator. LfLAC3 was also demonstrated to degrade low-density polyethylene (LDPE) films after eight weeks of incubation with either crude cell lysate or purified enzyme. The formation of a variety of functional groups was detected using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Damage on the surfaces of PE films was observed via scanning electron microscopy (SEM). The potential catalytic mechanism of LfLAC3 was disclosed by structure and substrate-binding modes analysis. These findings demonstrated that LfLAC3 is a promiscuous enzyme that has promising potential for dye decolorization and PE degradation.


Assuntos
Poluentes Ambientais , Polietileno , Lacase/metabolismo , Corantes/química , Hidrolases
6.
Blood ; 141(25): 3017-3018, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37347503
7.
Immunol Rev ; 313(1): 46-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36097870

RESUMO

Structures of alternative pathway proteins have offered a comprehensive structural basis for understanding the molecular mechanisms governing activation and regulation of the amplification pathway of the complement cascade. Although properdin (FP) is required in vivo to sustain a functional alternative pathway, structural studies have been lagging behind due to the extended structure and polydisperse nature of FP. We review recent progress with respect to structure determination of FP and its proconvertase/convertase complexes. These structures identify in detail regions in C3b, factor B and FP involved in their mutual interactions. Structures of FP oligomers obtained by integrative studies have shed light on how FP activity depends on its oligomerization state. The accumulated structural knowledge allows us to rationalize the effect of point mutations causing FP deficiency. The structural basis for FP inhibition by the tick CirpA proteins is reviewed and the potential of alphafold2 predictions for understanding the interaction of FP with other tick proteins and the NKp46 receptor on host immune cells is discussed. The accumulated structural knowledge forms a comprehensive basis for understanding molecular interactions involving FP, pathological conditions arising from low levels of FP, and the molecular strategies used by ticks to suppress the alternative pathway.


Assuntos
Ativação do Complemento , Properdina , Humanos , Properdina/genética , Properdina/metabolismo , Via Alternativa do Complemento
8.
Protein Sci ; 31(10): e4432, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36173177

RESUMO

Structure determination of macromolecular complexes is challenging if subunits can dissociate during crystallization or preparation of electron microscopy grids. We present an approach where a labile complex is stabilized by linking subunits though introduction of a peptide tag in one subunit that is recognized by a nanobody tethered to a second subunit. This allowed crystal structure determination at 3.9 Å resolution of the highly non-globular 320 kDa proconvertase formed by complement components C3b, factor B, and properdin. Whereas the binding mode of properdin to C3b is preserved, an internal rearrangement occurs in the zymogen factor B von Willebrand domain type A domain compared to the proconvertase not bound to properdin. The structure emphasizes the role of two noncanonical loops in thrombospondin repeats 5 and 6 of properdin in augmenting the activity of the C3 convertase. We suggest that linking of subunits through peptide specific tethered nanobodies represents a simple alternative to approaches like affinity maturation and chemical cross-linking for the stabilization of large macromolecular complexes. Besides applications for structural biology, nanobody bridging may become a new tool for biochemical analysis of unstable macromolecular complexes and in vitro selection of highly specific binders for such complexes.


Assuntos
Properdina , Anticorpos de Domínio Único , Convertases de Complemento C3-C5/química , Convertases de Complemento C3-C5/metabolismo , Fator B do Complemento/química , Fator B do Complemento/metabolismo , Precursores Enzimáticos , Substâncias Macromoleculares , Properdina/química , Properdina/metabolismo , Trombospondinas
10.
Front Immunol ; 13: 872536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935935

RESUMO

The complement system is a part of the innate immune system, where it labels intruding pathogens as well as dying host cells for clearance. If complement regulation is compromised, the system may contribute to pathogenesis. The proteolytic fragment C3b of complement component C3, is the pivot point of the complement system and provides a scaffold for the assembly of the alternative pathway C3 convertase that greatly amplifies the initial complement activation. This makes C3b an attractive therapeutic target. We previously described a nanobody, hC3Nb1 binding to C3 and its degradation products. Here we show, that extending the N-terminus of hC3Nb1 by a Glu-Trp-Glu motif renders the resulting EWE-hC3Nb1 (EWE) nanobody specific for C3 degradation products. By fusing EWE to N-terminal CCP domains from complement Factor H (FH), we generated the fusion proteins EWEnH and EWEµH. In contrast to EWE, these fusion proteins supported Factor I (FI)-mediated cleavage of human and rat C3b. The EWE, EWEµH, and EWEnH proteins bound C3b and iC3b with low nanomolar dissociation constants and exerted strong inhibition of alternative pathway-mediated deposition of complement. Interestingly, EWEnH remained soluble above 20 mg/mL. Combined with the observed reactivity with both human and rat C3b as well as the ability to support FI-mediated cleavage of C3b, this features EWEnH as a promising candidate for in vivo studies in rodent models of complement driven pathogenesis.


Assuntos
Complemento C3 , Complemento C3b , Animais , Ativação do Complemento , C3 Convertase da Via Alternativa do Complemento , Convertases de Complemento C3-C5/metabolismo , Complemento C3b/metabolismo , Fibrinogênio/metabolismo , Humanos , Ratos
11.
J Immunol Methods ; 507: 113295, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35679953

RESUMO

Factor D (also known as adipsin) is a serine protease and part of the complement system, involved in innate immune responses and effector functions of antibodies. Factor D cleaves factor B complexed with C3b, leading to the C3 convertase C3bBb. This C3 convertase is central in the alternative activation pathway and the amplification loop, which amplifies the two other complement activation pathways: the classical pathway and the lectin pathway. Adipocytes synthesize factor D as a pro-form comprising 6 additional residues that must be cleaved off to generate a mature form. The MBL-associated serine protease 3 (MASP-3), found in complex with the pattern recognition molecules of lectin activation pathway, converts the pro-form to mature factor D, which reportedly is the most abundant form found in the circulation at concentrations of 1-2 µg/ml among healthy individuals. The mature factor D is rate-limiting for complement activation, but little is known about the distribution of pro vs. mature factor D in the circulation, the regulation hereof and the potential activation stimuli of the lectin pathway, responsible for activation of MASP-3 and subsequent conversion of pro-form of factor D. In this light we established and validated an ELISA specific for measuring the pro-form of complement factor D. With a working range of 0.82-25 ng/ml, acceptable intra and inter assay CVs, and a relative recovery rate above 90%, we found that the median plasma concentration in Danish blood donors was 134 ng/ml; corresponding to that 8-15% factor D circulates as pro-form. We also found that blood sampling procedures affect conversion and hence the levels measured in serum and plasma.


Assuntos
Fator D do Complemento , Serina Proteases Associadas a Proteína de Ligação a Manose , Ativação do Complemento , Convertases de Complemento C3-C5 , Fator D do Complemento/metabolismo , Lectina de Ligação a Manose da Via do Complemento , Humanos , Lectinas/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo
12.
J Biol Chem ; 298(8): 102168, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35738398

RESUMO

The integrin receptor αMß2 mediates phagocytosis of complement-opsonized objects, adhesion to the extracellular matrix, and transendothelial migration of leukocytes. However, the mechanistic aspects of αMß2 signaling upon ligand binding are unclear. Here, we present the first atomic structure of the human αMß2 headpiece fragment in complex with the nanobody (Nb) hCD11bNb1 at a resolution of 3.2 Å. We show that the receptor headpiece adopts the closed conformation expected to exhibit low ligand affinity. The crystal structure indicates that in the R77H αM variant, associated with systemic lupus erythematosus, the modified allosteric relationship between ligand binding and integrin outside-inside signaling is due to subtle conformational effects transmitted over a distance of 40 Å. Furthermore, we found the Nb binds to the αI domain of the αM subunit in an Mg2+-independent manner with low nanomolar affinity. Biochemical and biophysical experiments with purified proteins demonstrated that the Nb acts as a competitive inhibitor through steric hindrance exerted on the thioester domain of complement component iC3b attempting to bind the αM subunit. Surprisingly, we show that the Nb stimulates the interaction of cell-bound αMß2 with iC3b, suggesting that it may represent a novel high-affinity proteinaceous αMß2-specific agonist. Taken together, our data suggest that the iC3b-αMß2 complex may be more dynamic than predicted from the crystal structure of the core complex. We propose a model based on the conformational spectrum of the receptor to reconcile these observations regarding the functional consequences of hCD11bNb1 binding to αMß2.


Assuntos
Complemento C3b , Antígeno de Macrófago 1 , Antígenos CD18/metabolismo , Complemento C3b/metabolismo , Humanos , Integrinas , Leucócitos/metabolismo , Ligantes , Antígeno de Macrófago 1/metabolismo
13.
J Innate Immun ; : 1-21, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551129

RESUMO

Damage and disease of nerves activates the complement system. We demonstrated that activation of the terminal pathway of the complement system leads to the formation of the membrane attack complex (MAC) and delays regeneration in the peripheral nervous system. Animals deficient in the complement component C6 showed improved recovery after neuronal trauma. Thus, inhibitors of the MAC might be of therapeutic use in neurological disease. Here, we describe the development, structure, mode of action, and properties of a novel therapeutic monoclonal antibody, CP010, against C6 that prevents formation of the MAC in vivo. The monoclonal antibody is humanized and specific for C6 and binds to an epitope in the FIM1-2 domain of human and primate C6 with sub-nanomolar affinity. Using biophysical and structural studies, we show that the anti-C6 antibody prevents the interaction between C6 and C5/C5b by blocking the C6 FIM1-2:C5 C345c axis. Systemic administration of the anti-C6 mAb caused complete depletion of free C6 in circulation in transgenic rats expressing human C6 and thereby inhibited MAC formation. The antibody prevented disease in experimental autoimmune myasthenia gravis and ameliorated relapse in chronic relapsing experimental autoimmune encephalomyelitis in human C6 transgenic rats. CP010 is a promising complement C6 inhibitor that prevents MAC formation. Systemic administration of this C6 monoclonal antibody has therapeutic potential in the treatment of neuronal disease.

14.
Mol Cell Proteomics ; 20: 100090, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33964423

RESUMO

Human α2-macroglobulin (A2M) is the most characterized protease inhibitor in the alpha-macroglobulin (αM) superfamily, but the structure of its native conformation has not been determined. Here, we combined negative stain electron microscopy (EM), small-angle X-ray scattering (SAXS), and cross-linking-mass spectrometry (XL-MS) to investigate native A2M and its collapsed conformations that are obtained through aminolysis of its thiol ester by methylamine or cleavage of its bait region by trypsin. The combined interpretation of these data resulted in a model of the native A2M tetramer and its conformational changes. Native A2M consists of two crescent-shaped disulfide-bridged subunit dimers, which face toward each other and surround a central hollow space. In native A2M, interactions across the disulfide-bridged dimers are minimal, with a single major interface between the linker (LNK) regions of oppositely positioned subunits. Bait region cleavage induces both intrasubunit domain repositioning and an altered configuration of the disulfide-bridged dimer. These changes collapse the tetramer into a more compact conformation, which encloses an interior protease-trapping cavity. A recombinant A2M with a modified bait region was used to map the bait region's position in native A2M by XL-MS. A second recombinant A2M introduced an intersubunit disulfide into the LNK region, demonstrating the predicted interactions between these regions in native A2M. Altogether, our native A2M model provides a structural foundation for understanding A2M's protease-trapping mechanism, its conformation-dependent receptor interactions, and the dissociation of native A2M into dimers due to inflammatory oxidative stress.


Assuntos
Peptídeo Hidrolases/química , alfa-Macroglobulinas/química , Células HEK293 , Humanos , Espectrometria de Massas/métodos , Microscopia Eletrônica/métodos , Mutação , Conformação Proteica , Proteínas Recombinantes/química , Espalhamento a Baixo Ângulo , alfa-Macroglobulinas/genética
15.
Biochemistry ; 59(51): 4799-4809, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33301305

RESUMO

Most proteins in the α-macroglobulin (αM) superfamily contain reactive thiol esters that are required for their biological function. Here, we have characterized the human α2-macroglobulin (A2M) and complement component C3 mutants A2M Q975C and C3 Q1013C, which replace the CGEQ thiol ester motifs of the original proteins with the disulfide-forming sequence CGEC. Mass spectrometry showed that the intended disulfide was formed in both proteins. The correct folding and native conformation of A2M Q975C were shown by its assembly to a tetramer, an initially slow electrophoretic mobility with a demonstrable conformational collapse induced by proteolysis, functional protease trapping, and conformation-dependent interactions with low-density lipoprotein receptor-related protein 1. However, A2M Q975C had a decreased capacity to inhibit trypsin and was more susceptible to cleavage by trypsin or thermolysin when compared to wild-type A2M. C3 Q1013C also folded correctly and was initially in a native conformation, as demonstrated by its cation exchange elution profile, electrophoretic mobility, and interaction with complement factor B, although it assumed a conformation that was distinct from native C3, C3b, or C3(H2O) when cleaved by trypsin. These results demonstrate that disulfides can substitute thiol esters and maintain the native conformations of A2M and C3. Additionally, they indicate that proteolysis is not the sole factor in the conformational changes of A2M and C3 and that thiol ester lysis also plays a role.


Assuntos
Complemento C3/química , Dissulfetos/química , alfa-Macroglobulinas/química , Sequência de Aminoácidos , Complemento C3/genética , Cisteína/química , Cisteína/genética , Células HEK293 , Humanos , Mutação , Conformação Proteica , Proteólise , Tripsina/química , alfa-Macroglobulinas/genética
16.
Elife ; 92020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32909942

RESUMO

Properdin stabilizes the alternative C3 convertase (C3bBb), whereas its role as pattern-recognition molecule mediating complement activation is disputed for decades. Previously, we have found that soluble collectin-12 (sCL-12) synergizes complement alternative pathway (AP) activation. However, whether this observation is C3 dependent is unknown. By application of the C3-inhibitor Cp40, we found that properdin in normal human serum bound to Aspergillus fumigatus solely in a C3b-dependent manner. Cp40 also prevented properdin binding when properdin-depleted serum reconstituted with purified properdin was applied, in analogy with the findings achieved by C3-depleted serum. However, when opsonized with sCL-12, properdin bound in a C3-independent manner exclusively via its tetrameric structure and directed in situ C3bBb assembly. In conclusion, a prerequisite for properdin binding and in situ C3bBb assembly was the initial docking of sCL-12. This implies a new important function of properdin in host defense bridging pattern recognition and specific AP activation.


Assuntos
Colectinas , Via Alternativa do Complemento , Properdina , Aspergillus fumigatus/imunologia , Colectinas/sangue , Colectinas/metabolismo , Complemento C3/metabolismo , Via Alternativa do Complemento/imunologia , Via Alternativa do Complemento/fisiologia , Células HEK293 , Humanos , Properdina/análise , Properdina/metabolismo , Ligação Proteica/imunologia
17.
Immunology ; 161(1): 66-79, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32583419

RESUMO

Some human antibodies may paradoxically inhibit complement activation on bacteria and enhance pathogen survival in humans. This property was also claimed for IgG antibodies reacting with terminal galactose-α-1,3-galactose (Galα3Gal; IgG anti-αGal), a naturally occurring and abundant antibody in human plasma that targets numerous different pathogens. To reinvestigate these effects, we used IgG anti-αGal affinity isolated from a pool of normal human IgG and human hypogammaglobulinaemia serum as a complement source. Flow cytometry was performed to examine antibody binding and complement deposition on pig erythrocytes, Escherichia coli O86 and Streptococcus pneumoniae serotype 9V. Specific nanobodies were used to block the effect of single complement factors and to delineate the complement pathways involved. IgG anti-αGal was capable of activating the classical complement pathway on all the tested target cells. The degree of activation was exponentially related to the density of bound antibody on E. coli O86 and pig erythrocytes, but more linearly on S. pneumoniae 9V. The alternative pathway of complement amplified complement deposition. Deposited C3 fragments covered the activating IgG anti-αGal, obstructing its detection and highlighting this as a likely general caveat in studies of antibody density and complement deposition. The inherent capacity for complement activation by the purified carbohydrate reactive IgG anti-αGal was similar to that of normal human IgG. We propose that the previously reported complement inhibition by IgG anti-αGal relates to suboptimal assay configurations, in contrast to the complement activating property of the antibodies demonstrated in this paper.


Assuntos
Ativação do Complemento/imunologia , Dissacarídeos/imunologia , Escherichia coli/imunologia , Imunoglobulina G/imunologia , Anticorpos de Domínio Único/imunologia , Streptococcus pneumoniae/imunologia , Agamaglobulinemia/imunologia , Animais , Reações Antígeno-Anticorpo/imunologia , Proteínas do Sistema Complemento/imunologia , Humanos , Suínos
18.
J Immunol ; 204(5): 1345-1361, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969389

RESUMO

Aggregation of α-synuclein (αSN) is an important histological feature of Parkinson disease. Recent studies showed that the release of misfolded αSN from human and rodent neurons is relevant to the progression and spread of αSN pathology. Little is known, however, about the mechanisms responsible for clearance of extracellular αSN. This study found that human complement receptor (CR) 4 selectively bound fibrillar αSN, but not monomeric species. αSN is an abundant protein in the CNS, which potentially could overwhelm clearance of cytotoxic αSN species. The selectivity of CR4 toward binding fibrillar αSN consequently adds an important αSN receptor function for maintenance of brain homeostasis. Based on the recently solved structures of αSN fibrils and the known ligand preference of CR4, we hypothesize that the parallel monomer stacking in fibrillar αSN creates a known danger-associated molecular pattern of stretches of anionic side chains strongly bound by CR4. Conformational change in the receptor regulated tightly clearance of fibrillar αSN by human monocytes. The induced change coupled concomitantly with phagolysosome formation. Data mining of the brain transcriptome in Parkinson disease patients supported CR4 as an active αSN clearance mechanism in this disease. Our results associate an important part of the innate immune system, namely complement receptors, with the central molecular mechanisms of CNS protein aggregation in neurodegenerative disorders.


Assuntos
Integrina alfaXbeta2 , Macrófagos , Doença de Parkinson , Fagossomos , Agregação Patológica de Proteínas , alfa-Sinucleína , Humanos , Integrina alfaXbeta2/química , Integrina alfaXbeta2/genética , Integrina alfaXbeta2/imunologia , Macrófagos/imunologia , Macrófagos/patologia , Doença de Parkinson/genética , Doença de Parkinson/imunologia , Doença de Parkinson/patologia , Fagossomos/química , Fagossomos/genética , Fagossomos/imunologia , Fagossomos/patologia , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/imunologia , Agregação Patológica de Proteínas/patologia , Estrutura Quaternária de Proteína , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/imunologia
19.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 2): 0, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30713161

RESUMO

The 54 kDa protein properdin, also known as factor P (FP), plays a major role in the complement system through the stabilization of the alternative pathway convertases. FP circulates in the blood as cyclic dimers, trimers and tetramers, and this heterogeneity challenges detailed structural insight into the mechanism of convertase stabilization by FP. Here, the generation of an intact FP monomer and a variant monomer with the third thrombospondin repeat liberated is described. Both FP monomers were excised from recombinant full-length FP containing internal cleavage sites for TEV protease. These FP monomers could be crystallized, and complete data sets extending to 2.8 Šresolution for the intact FP monomer and to 3.5 Šresolution for the truncated variant were collected. The principle of specific monomer excision and domain removal by the insertion of a protease cleavage site may be broadly applicable to structural studies of oligomeric, flexible and modular proteins.


Assuntos
Properdina/química , Properdina/metabolismo , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Endopeptidases/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Homologia de Sequência
20.
Acta Crystallogr D Struct Biol ; 73(Pt 10): 804-813, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28994409

RESUMO

The generation of high-quality protein crystals and the loss of phase information during an X-ray crystallography diffraction experiment represent the major bottlenecks in the determination of novel protein structures. A generic method for introducing Hg atoms into any crystal independent of the presence of free cysteines in the target protein could considerably facilitate the process of obtaining unbiased experimental phases. Nanobodies (single-domain antibodies) have recently been shown to promote the crystallization and structure determination of flexible proteins and complexes. To extend the usability of nanobodies for crystallographic work, variants of the Nb36 nanobody with a single free cysteine at one of four framework-residue positions were developed. These cysteines could be labelled with fluorophores or Hg. For one cysteine variant (Nb36-C85) two nanobody structures were experimentally phased using single-wavelength anomalous dispersion (SAD) and single isomorphous replacement with anomalous signal (SIRAS), taking advantage of radiation-induced changes in Cys-Hg bonding. Importantly, Hg labelling influenced neither the interaction of Nb36 with its antigen complement C5 nor its structure. The results suggest that Cys-Hg-labelled nanobodies may become efficient tools for obtaining de novo phase information during the structure determination of nanobody-protein complexes.


Assuntos
Cisteína/química , Mercúrio/química , Anticorpos de Domínio Único/química , Animais , Camelídeos Americanos , Complemento C5/imunologia , Cristalização , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Anticorpos de Domínio Único/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...